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Structural models of the FeMo cofactor recently deduced from 
X-ray analysis of the FeMo proteins of Azotobacter vinelandii 
and Clostridium pasteurianum contain Fe& and MoFe3S3 
cuboidal subunits bridged by three sulfide ligands.' The 
significant feature demonstrated by these models is the presence 
of six coordinatively unsaturated Fe atoms with trigonal planar 
geometry forming a trigonal prism, and although the actual N2 
binding mode is yet uncertain, more than two of these Fe atoms 
have been suggested to be associated with N2 coordination.laV2 
Reactions of N2 as well as diazenes and hydrazines which proceed 
at a multimetallic site surrounded by sulfur ligands are therefore 
of increasing interest. However, in contrast to the significant 
progress in the chemistry of coordinated dinitrogen in mononuclear 
complexes, especially [M(N2)2(P)4] ( M  = Mo, W; P = tertiary 
phosphine),3 reactivities of multinuclear complexes toward N2 
and relating nitrogenous substrates are relatively ~nexplored .~  

Our recent studies on the reactivities of a series of thiolate- 
bridged diruthenium complexes5 have shown that [Cp*Ru(p- 
SPri)zRuCp*] (la; Cp* = q5-C5Me5), which has two coordina- 
tively unsaturated Ru(I1) centers bridged by two thiolate ligands, 
displays intriguing reactivities toward various substrates including 
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H2, CO, and  alkyne^.^^,^ As an extension of these studies, we 
have now found that reactions of hydrazines with la result in the 
catalytic N-N bond cleavage under mild conditions. Intermediate 
dinuclear p-diazene complexes have been isolated or detected 
spectroscopically. 

Treatment of 1 with 2 equiv of phenylhydrazine in toluene at  
room temperature afforded dinuclear phenyldiazene complexes 
[Cp*Ru(pL-sl:sl-PhN=NH)(p-SR)~RuCp*] (2) as a blueoil (2a, 
R = Pr97 or a deep green crystalline solid (2b, R = Xy; Xy = 
2,6-Me2C6&)* in moderate yields. Concurrent formation of 
nearly equimolar amounts of aniline and ammonia per 1 was 
observed (eq l), and neither H2 nor N2 was evolved during the 
reaction. The 1H N M R  spectra of 2 exhibit a singlet with the 
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Table 1. Catalytic Disproportionation of Hydrazine0 
'PN: 

Cp*Ru \\ARuCp* + 2 PhNHluri, - C ~ ' R U ( ~ R ~ C ~ '  + Phlurin + Mh, (1) 
RS SR RS SR 

1 a (R = Pr') 
l b  (R = Xy) 

2a, R = Pr', 52% 
2b, R = Xy. 73% 

intensity of 1 H in an extremely low field (2a, 12.67; 2b, 13.40 
ppm), which is characteristic of the proton attached to the #-N 
atom in the diazene ligand." Other IH N M R  data are also 
consistent with the dinuclear structure of 2 shown in eq 1. The 
presence of a bridging phenyldiazene ligand in 2 has also been 
suggested by the IR spectra (KBr disk), showing strong absorp- 
tions at  1246 (24 and 1233 cm-I (2b) assignable to VN=N. 
Relatively low frequencies may be ascribed to the 4c-6e ?r bonding 
in the RumNmNmRu core as observed in other p-diazene 
complexes.I2 

Although how 2 mol of phenylhydrazine disproportionate into 
aniline, ammonia, and a bridging phenyldiazene ligand is still 
obscure, the adjacent coordinatively unsaturated metals in 1 seem 
to play an important role in the N-N bond cleavage in this reaction. 
An osmium cluster with labile nitrile ligands, [ O S ~ ( C O ) ~ O -  
(MeCN)2], is known to react with phenylhydrazine to give 
p-phenyldiazenid+p-hydrido cluster [ (pH)Os3(CO) I&-#$- 
N=NPh)], but the reaction stoichiometry and mechanism are 
not clear. 13 

Interestingly, reaction of l a  with 50 equiv of phenylhydrazine 
gave aniline and ammonia in higher yields than those expected 
by the stoichiometry shown in eq 1, accompanied by evolution 
of some N2 gas.14 This may indicate that the generated 2a reacted 
further with phenylhydrazine to give these nitrogenous products. 
Actually, treatment of the isolated 2a with excess phenylhydrazine 
produced aniline, ammonia, and N2. 

These findings prompted us to extend this reaction system to 
that containing unsubstituted hydrazine, and we have found that 
the catalytic disproportionation reaction of hydrazine into 
ammonia and N2 takes place smoothly in the presence of 1 (eq 
2). Results of the reactions using 50 equiv of N2H4 per 1 are 

summarized in Table 1. On the other hand, treatment of 10 
equiv of N2H4 with l a  at  room temperature resulted in the 
completion of this disproportionation reaction in 16 h and the IH 
N M R  spectrum of the reaction mixture confirmed the almost 
quantitative regeneration of la .  Although isolation and full 
characterization of intermediate complexes were unsuccessful, 
'H N M R  spectra of the mixtures a t  the early stages of the reaction 
have shown the resonances assignable to diazene complexes 
[C~*RU(~-~~:+HN=NH)(~-SR)~RUC~*] (3a, R = Pri; 3b, R 
= Xy).I5 It is to be noted that several dinuclear diazene complexes 
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yieldsd conversion of 
N2H4 (%)b NH? N2 complex temp (OC) 

la  rt 44 32 5.5 
l a  40 91 66 13 
l b  rt 6 4 0.9 

Reaction conditions: 1, 0.04 mmol; N2H4aH20 (80%), 2 mmol; 
toluene, 4 mL; 16 h; under Ar. (mol of N2H4 consumed/mol of N2H4 
charged) X 100. See ref 9. mol per mol of 1. 

Scheme 1 
2N2H4 2NH3 

H. .H 
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N2+2NH3 N2H4 

reported previously4a contain p-q1:q1-transl2 or p-v2:q2 bound16 
diazene ligands and, to our knowledge, p-gl:+cis-diazene 
complexes are unknown despite that such a coordination mode 
has been demonstrated in certain diphenyldiazene complexes.l7 
In the absence of hydrazine, 3a does not react further, yielding 
neither hydrazine, ammonia, nor N2, which suggests that the 
conversion of 3 into 1 proceeds through the reaction of 3 with 
hydrazine. A plausible catalytic cycle based on these observations 
is depicted in Scheme 1. 

The present study has demonstrated that the diruthenium(I1) 
center bridged by thiolate ligands can facilitate the N-N bond 
cleavage of hydrazines under mild conditions and provides the 
catalytic site for disproportionation of hydrazine into ammonia 
and dinitrogen. Involvement of diazene in the catalytic cycle is 
noteworthy. Relating catalytic disproportionation of hydrazine 
using a certain dimolybdenum complex as a catalyst precursor 
was reported recently.lE Although disproportionation19 and 
catalytic reduction20 of hydrazine are known to be promoted also 
at  a single metal center, the results reported here are of 
considerable interest since they might have some relevance to the 
activation and transformation of dinitrogen in the FeMo cofactor. 
Further studies are now under way to clarify not only the 
mechanism operating in this hydrazine disproportionation reaction 
but also the new reactivities of the diazene complexes reported 
here. 
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