Volume 33

Number 17

August 17, 1994

Inorganic Chemistry

© Copyright 1994 by the American Chemical Society

Communications

Catalytic N-N Bond Cleavage of Hydrazines at the Coordinatively Unsaturated Diruthenium Center in $[Cp*Ru(\mu-SR)_2RuCp*]$ (Cp* = η^5 -C₅Me₅; R = Prⁱ, 2,6-Me₂C₆H₃) and Isolation of μ -Phenyldiazene Complexes $[Cp*Ru(\mu-PhN=NH)(\mu-SR)_2RuCp*]$

Shigeki Kuwata, Yasushi Mizobe, and Masanobu Hidai*

Department of Chemistry and Biotechnology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received April 27, 1994

Structural models of the FeMo cofactor recently deduced from X-ray analysis of the FeMo proteins of Azotobacter vinelandii and Clostridium pasteurianum contain Fe₄S₃ and MoFe₃S₃ cuboidal subunits bridged by three sulfide ligands.¹ The significant feature demonstrated by these models is the presence of six coordinatively unsaturated Fe atoms with trigonal planar geometry forming a trigonal prism, and although the actual N₂ binding mode is yet uncertain, more than two of these Fe atoms have been suggested to be associated with N_2 coordination.^{1a,2} Reactions of N_2 as well as diazenes and hydrazines which proceed at a multimetallic site surrounded by sulfur ligands are therefore of increasing interest. However, in contrast to the significant progress in the chemistry of coordinated dinitrogen in mononuclear complexes, especially $[M(N_2)_2(P)_4]$ (M = Mo, W; P = tertiary phosphine),3 reactivities of multinuclear complexes toward N2 and relating nitrogenous substrates are relatively unexplored.⁴

Our recent studies on the reactivities of a series of thiolatebridged diruthenium complexes⁵ have shown that $[Cp^*Ru(\mu SPr^{i}_{2}RuCp^{*}$] (1a; $Cp^{*} = \eta^{5} - C_{5}Me_{5}$), which has two coordinatively unsaturated Ru(II) centers bridged by two thiolate ligands, displays intriguing reactivities toward various substrates including H₂, CO, and alkynes.^{5d,6} As an extension of these studies, we have now found that reactions of hydrazines with 1a result in the catalytic N-N bond cleavage under mild conditions. Intermediate dinuclear μ -diazene complexes have been isolated or detected spectroscopically.

Treatment of 1 with 2 equiv of phenylhydrazine in toluene at room temperature afforded dinuclear phenyldiazene complexes $[Cp*Ru(\mu-\eta^{1}:\eta^{1}-PhN=NH)(\mu-SR)_{2}RuCp*](2) as a blue oil (2a,$ $R = Pr^{i}$ ⁷ or a deep green crystalline solid (2b, R = Xy; Xy =2,6-Me₂C₆H₃)⁸ in moderate yields. Concurrent formation of nearly equimolar amounts of aniline and ammonia per 1 was observed (eq 1), and neither H₂ nor N₂ was evolved during the reaction. The ¹H NMR spectra of 2 exhibit a singlet with the

- (a) Dev, S.; Imagawa, K.; Mizobe, Y.; Cheng, G.; Wakatsuki, Y.; Yamazaki, H.; Hidai, M. Organometallics 1989, 8, 1232. (b) Dev, S.; (5) Mizobe, Y.; Hidai, M. Inorg. Chem. 1990, 29, 4797. (c) Matsuzaka, H.; Hirayama, Y.; Nishio, M.; Mizobe, Y.; Hidai, M. Organometallics 1993, 12, 36. (d) Takahashi, A.; Mizobe, Y.; Matsuzaka, H.; Dev, S.; Hidai, M. J. Organomet. Chem. 1993, 456, 243
- (6) (a) Matsuzaka, H.; Mizobe, Y.; Nishio, M.; Hidai, M. J. Chem. Soc., Chem. Commun. 1991, 1011. (b) Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. *Ibid.* **1993**, 375. (c) See also: Hörnig, A.; Rietmann, C.; Englert, U.; Wagner, T.; Kölle, U. *Chem. Ber.* **1993**, *126*, 2609.
- (7) To a deep blue-green solution of 1a (151.5 mg, 0.243 mmol) in toluene (4 mL) was added phenylhydrazine (56.8 mg, 0.525 mmol), and the mixture was stirred for 8 h. After the amounts of aniline (0.76 mol/mol of 1a) and ammonia (0.75 mol/mol of 1a) in the reaction mixture were determined,⁹ the evaporated reaction mixture residue was chromato-graphed on silica gel with THF-hexane (6% v/v). Evaporation of the solvent from a deep blue band gave 2a as a blue oil (92.3 mg, 52%). Solvent from a deep one band gave 2a as a blue on (22.5 m₅, 22.6). Satisfactory analytical data are not yet available for 2a despite the repeated purification, although the ¹H NMR spectrum is completely consistent with the dinuclear structure. ¹H NMR (C₆D₆): δ 12.67 (s, 1H, NH, disappeared upon treatment with D₂O), 6.91-7.52 (m, 5H, $(C_{6}H_5)$, 2.22 (sep, 2H, SCHMe₂), 1.74, 1.66 (s, 15H each, Cp[•]), 1.12, 1.11 (d, 6H each, SCHMe₂).
- (8) To a purple solution of 1b (95.5 mg, 0.128 mmol) in toluene (4 mL) was added phenylhydrazine (28.9 mg, 0.267 mmol), and the reaction mixture was stirred for 8 h. Aniline (0.90 mol/mol of 1b) and ammonia (0.88 mol/mol of 1b) produced were quantitatively analyzed.9 Addition of acetonitrile to the concentrated reaction mixture gave 2b as a crystalline solid (59.9 mg, 73%). ¹H NMR (C₆D₆): δ13.40 (s, 1H, NH, disappeared N. 3.36.
- (9) Yields of aniline, N₂, and H₂ were determined by GLC. Ammonia and hydrazine were quantified as previously reported.¹⁰
 (10) Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. J. Am.
- Chem. Soc. 1980, 102, 7461.

© 1994 American Chemical Society

 ⁽a) Rees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1993, 40, 89.
 (b) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389.
 (c) Kim, J.; Rees, D. C. Science 1992, 237, 1677. (d) Bolin, J. T.; Campobasso, N.; Muchmore, S. W.; Morgan, T. V.; Mortenson, L. E. In Molybdenum Enzymes, Cofactors and Model Systems; Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; American Chemical Society: Washington, D., INEWION, W. E., Eds.; American Chemical Society: Washington, DC, 1993; pp 186-195. (e) See also: Liu, H. I.; Filipponi, A.; Gavini, N.; Burgess, B. K.; Hedman, B.; Cicco, A. D.; Natoli, C. R.; Hodgson, K. O. J. Am. Chem. Soc. 1994, 116, 2418.
(2) (a) Deng, H.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1993, 32, 1062. (b) Sellmann, D. Ibid. 1993, 32, 64.
(3) (a) Hidai, M.; Mizobe, Y. In Molybdenum Enzymes, Cofactors and Model Surfaces. Stafel E. L. Concurrence D. Nauton, W. E. Edu.

Model Systems; Stiefel, E. I., Coucovanis, D., Newton, W. E., Eds.; American Chemical Society: Washington, DC, 1993; pp 346-362. (b) Hidai, M.; Mizobe, Y. In Reactions of Coordinated Ligands; Braterman, F. S., Ed.; Plenum Press: New York, 1989; Vol. 2, pp 53–114. (c) Hidai, M. In *Molybdenum Enzymes*; Spiro, T. G., Ed.; Wiley: New York, 1985; pp 285–341. (d) George, T. A.; DeBord, J. R. D. In ref 3a, pp 363–376. (e) Dilworth, J. R.; Richards, R. L. In *Comprehensive* Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon Press: Oxford, U.K., 1982; Vol. 8, pp 1073-1106. (f) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 197. (a) Sutton, D. Chem. Rev. 1993, 93, 995. (b) Leigh, G. J. Acc. Chem.

Res. 1992, 25, 177. (c) Henderson, R. A. Transition Met. Chem. 1990, 15, 330.

intensity of 1 H in an extremely low field (2a, 12.67; 2b, 13.40 ppm), which is characteristic of the proton attached to the η^1 -N atom in the diazene ligand.¹¹ Other ¹H NMR data are also consistent with the dinuclear structure of 2 shown in eq 1. The presence of a bridging phenyldiazene ligand in 2 has also been suggested by the IR spectra (KBr disk), showing strong absorptions at 1246 (2a) and 1233 cm⁻¹ (2b) assignable to $\nu_{N=N}$. Relatively low frequencies may be ascribed to the 4c–6e π bonding in the RumNmRu core as observed in other μ -diazene complexes.12

Although how 2 mol of phenylhydrazine disproportionate into aniline, ammonia, and a bridging phenyldiazene ligand is still obscure, the adjacent coordinatively unsaturated metals in 1 seem to play an important role in the N-N bond cleavage in this reaction. An osmium cluster with labile nitrile ligands, $[Os_3(CO)_{10}]$ (MeCN)₂], is known to react with phenylhydrazine to give μ -phenyldiazenido- μ -hydrido cluster [(μ -H)Os₃(CO)₁₀(μ - η ¹: η ¹-N=NPh)], but the reaction stoichiometry and mechanism are not clear.13

Interestingly, reaction of 1a with 50 equiv of phenylhydrazine gave aniline and ammonia in higher yields than those expected by the stoichiometry shown in eq 1, accompanied by evolution of some N_2 gas.¹⁴ This may indicate that the generated 2a reacted further with phenylhydrazine to give these nitrogenous products. Actually, treatment of the isolated 2a with excess phenylhydrazine produced aniline, ammonia, and N₂.

These findings prompted us to extend this reaction system to that containing unsubstituted hydrazine, and we have found that the catalytic disproportionation reaction of hydrazine into ammonia and N_2 takes place smoothly in the presence of 1 (eq 2). Results of the reactions using 50 equiv of N_2H_4 per 1 are

$$3 N_2 H_4 \xrightarrow{1} N_2 + 4 N H_3$$
 (2)

summarized in Table 1. On the other hand, treatment of 10 equiv of N₂H₄ with 1a at room temperature resulted in the completion of this disproportionation reaction in 16 h and the ¹H NMR spectrum of the reaction mixture confirmed the almost quantitative regeneration of 1a. Although isolation and full characterization of intermediate complexes were unsuccessful, ¹HNMR spectra of the mixtures at the early stages of the reaction have shown the resonances assignable to diazene complexes $[Cp^*Ru(\mu-\eta^1:\eta^1-HN=NH)(\mu-SR)_2RuCp^*] (3a, R = Pr^i; 3b, R$ = Xy).¹⁵ It is to be noted that several dinuclear diazene complexes

- (11) Haymore, B. L.; Ibers, J. A. J. Am. Chem. Soc. 1975, 97, 5369.
 (12) (a) Sellmann, D.; Böhlen, E.; Waeber, M.; Huttner, G.; Zsolnai, L. Angew. Chem., Int. Ed. Engl. 1985, 24, 981. (b) Sellmann, D.; Soglowek, W.; Knoch, F.; Moll, M. Ibid. 1989, 28, 1271. (c) Sellmann, D.; Käppler, J.; Moll, M.; Knoch, F. Inorg. Chem. 1993, 32, 960.
 (13) Samkoff, D. E.; Shapley, J. R.; Churchill, M. R.; Wasserman, H. J. Inser, Chem. 1994, 32, 397.
- Inorg. Chem. 1984, 23, 397.
- (14) To a solution of la (65.5 mg, 0.105 mmol) in toluene (4 mL) was added phenylhydrazine (0.52 mL, 5.3 mmol) under Ar, and the reaction mixture was stirred for 42 h. Yields of N₂, aniline, and ammonia were 0.3, 4.2,
- and 1.2 mol/mol of 1a, respectively.⁹ (15) ¹H NMR (C₆D₆) for 3a: δ 12.30 (s, 2H, NH), 2.08 (sep, 2 H, SCHMe₂), 1.83 (s, 30 H, Cp[•]), 0.93 (d, 12 H, SCHMe₂). For 3b: δ 12.74 (s, 2 H, NH), 6.82–7.30 (m, 6 H, SC₆H₃Me₂), 3.08, 1.53 (s, 6 H each, SC U M(c)) 14 (c) 10 U Co^{*}) SC₆H₃Me₂), 1.46 (s, 30 H, Cp*).

Communications

Table 1. Catalytic Disproportionation of Hydrazine^a

complex	temp (°C)	conversion of N_2H_4 (%) ^b	yield ^{c,d}	
			NH3	N_2
1a	rt	44	32	5.5
1 a	40	91	66	13
1b	rt	6	4	0.9

^a Reaction conditions: 1, 0.04 mmol; N₂H₄·H₂O (80%), 2 mmol; toluene, 4 mL; 16 h; under Ar. b (mol of N₂H₄ consumed/mol of N₂H₄ charged) \times 100. ^c See ref 9. ^d mol per mol of 1.

Scheme 1

reported previously^{4a} contain μ - η^1 : η^1 -trans¹² or μ - η^2 : η^2 bound¹⁶ diazene ligands and, to our knowledge, μ - η^1 : η^1 -cis-diazene complexes are unknown despite that such a coordination mode has been demonstrated in certain diphenyldiazene complexes.¹⁷ In the absence of hydrazine, **3a** does not react further, yielding neither hydrazine, ammonia, nor N_2 , which suggests that the conversion of 3 into 1 proceeds through the reaction of 3 with hydrazine. A plausible catalytic cycle based on these observations is depicted in Scheme 1.

The present study has demonstrated that the diruthenium(II) center bridged by thiolate ligands can facilitate the N-N bond cleavage of hydrazines under mild conditions and provides the catalytic site for disproportionation of hydrazine into ammonia and dinitrogen. Involvement of diazene in the catalytic cycle is noteworthy. Relating catalytic disproportionation of hydrazine using a certain dimolybdenum complex as a catalyst precursor was reported recently.¹⁸ Although disproportionation¹⁹ and catalytic reduction²⁰ of hydrazine are known to be promoted also at a single metal center, the results reported here are of considerable interest since they might have some relevance to the activation and transformation of dinitrogen in the FeMo cofactor. Further studies are now under way to clarify not only the mechanism operating in this hydrazine disproportionation reaction but also the new reactivities of the diazene complexes reported here.

Acknowledgment. This research was financially supported by the Ministry of Education, Science, and Culture of Japan.

- (16) (a) Blum, L.; Williams, I. D.; Schrock, R. R. J. Am. Chem. Soc. 1984, (10) (a) Blum, L.; Williams, I. D.; Schröck, K. K. J. Am. Chem. Soc. 1964, 106, 8316. (b) Evans, W. J.; Kociok-Köhn, G.; Ziller, J. W. Angew. Chem., Int. Ed. Engl. 1992, 31, 1081. (c) Evans, W. J.; Kociok-Köhn, G.; Leong, V. S.; Ziller, J. W. Inorg. Chem. 1992, 31, 3592.
 (17) (a) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc., Chem. Commun. 1982, 1015. (b) Vasyutinskaya, E. A.; Eremenko, I. L.; Nefedov, S. E.; Katugin, A. S.; Pasynskii, A. A.; Slovokhotov, Y. L.; Struchkov, Y. T. Metalloora, Chim. 1989, 2, 934.
- .; Struchkov, Y. T. Metalloorg. Chim. 1989, 2, 934
- (18) Block, E.; Ofori-Okai, G.; Kang, H.; Zubieta, J. J. Am. Chem. Soc. 1992, 114, 758.
- (19) See for example: (a) Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621. (b) Lay, P. A.; Taube, H. Inorg. Chem. 1989, 28, 3561. (20) (a) Schrock, R. R.; Glassman, T. E.; Vale, M. G. J. Am. Chem. Soc.
- 1991, 113, 725. (b) Schrock, R. R.; Glassman, T. E.; Vale, M. G.; Kol, M. Ibid. 1993, 115, 1760.